- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Anglés-Alcázar, D (1)
-
Arnaudova, M. (1)
-
Baker, A. (1)
-
Best, P. (1)
-
Blyth, S. (1)
-
Chemin, L. (1)
-
Cochrane, R K (1)
-
Davé, R. (1)
-
Duncan, K. (1)
-
Dunlop, J. (1)
-
Frank, B. (1)
-
Gawiser, E. (1)
-
Gloudemans, A. (1)
-
Hale, C. (1)
-
Haskell, P (1)
-
Hatch, N. (1)
-
Hayward, C C (1)
-
Heywood, I. (1)
-
Holwerda, B. (1)
-
Jarvis, M. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Recent works have suggested that energy balance spectral energy distribution (SED) fitting codes may be of limited use for studying high-redshift galaxies for which the observed ultraviolet and far-infrared emission are offset (spatially ‘decoupled’). It has been proposed that such offsets could lead energy balance codes to miscalculate the overall energetics, preventing them from recovering such galaxies’ true properties. In this work, we test how well the SED fitting code magphys can recover the stellar mass, star formation rate (SFR), specific SFR, dust mass, and luminosity by fitting 6706 synthetic SEDs generated from four zoom-in simulations of dusty, high-redshift galaxies from the FIRE project via dust continuum radiative transfer. Comparing our panchromatic results (using wavelengths 0.4–500 μm, and spanning 1 < z < 8) with fits based on either the starlight ($$\lambda _\mathrm{eff} \le 2.2\, \mu$$m) or dust ($$\ge 100\, \mu$$m) alone, we highlight the power of considering the full range of multiwavelength data alongside an energy balance criterion. Overall, we obtain acceptable fits for 83 per cent of the synthetic SEDs, though the success rate falls rapidly beyond z ≈ 4, in part due to the sparser sampling of the priors at earlier times since SFHs must be physically plausible (i.e. shorter than the age of the universe). We use the ground truth from the simulations to show that when the quality of fit is acceptable, the fidelity of magphys estimates is independent of the degree of UV/FIR offset, with performance very similar to that previously reported for local galaxies.more » « less
-
Duncan, K.; Baker, A.; Best, P.; Blyth, S.; Hatch, N.; Holwerda, B.; Jarvis, M.; Maddox, N.; Smith, D. J.; Arnaudova, M.; et al (, The Messenger)Galaxy evolution is regulated by the continuous cycle of gas accretion, consumption and feedback. Crucial in this cycle is the availability of neutral atomic (HI) and molecular hydrogen. Our current inventory of HI, however, is very limited beyond the local Universe (z > 0.25), resulting in an incomplete picture. ORCHIDSS is designed to address this critical challenge, using the powerful combination of 4MOST spectroscopy and sensitive radio observations from the MeerKAT deep extragalactic surveys to trace the evolution of neutral gas and its lifecycle within galaxies across the bulk of cosmic history.more » « less
An official website of the United States government

Full Text Available